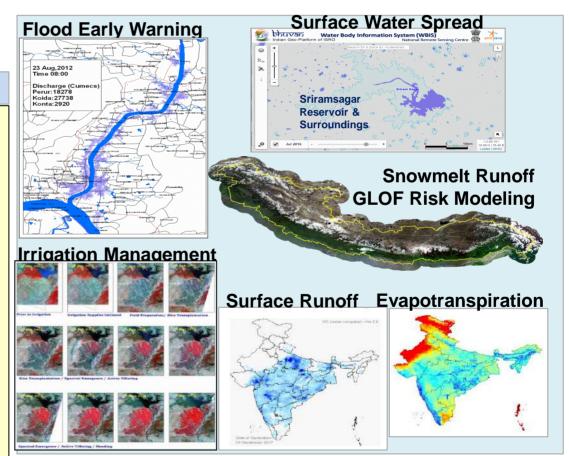
Satellite Data Based Operational Geo-spatial Services and Applications

under National Hydrology Project

30th July 2019


Dr. V. Venkateshwar Rao Project Director, NHP Group Director, WRG

Satellite Data Based Geo-spatial Products, Services and Applications Under National Hydrology Project

- **National Hydrology Project (NHP) is being executed by Ministry of Water Resources, Govt. of India**
- **NRSC** is signatory to NHP as one of the Implementing Agency
- **NRSC** to support NHP through geo-spatial data products, services, customized applications development
- **RS. 79.437 Crore, 2017-18 to 2023-24**
- 7 Major study components
- Capacity building & Training to the stake holders

Salient Features

- Hydro-Informatics (Snowmelt, Evapotranspiration, Soil Moisture, Surface Runoff, Reservoir Inflows, Hydrological Drought)
- Development of Spatial Flood Early Warning for Two (Tapi & Godavari) river basins
- GLOF Modelling for high risk lakes (15 No's)
- Real-time DSS for Irrigation Water Management (Narayanpur Command Area)
- Hydro-conditioned DTM (ALTM and Satellite) for Flood and GLOF modelling
- Capacity building for Central & State water resources departments personnel (4 Trainings & 100 Officials/year)
- Web services through NWIC & Bhuvan

Proposed National Remote Sensing Centre Activities under National Hydrology Project

- 1. Real-time Operational Spatial Flood Early Warning System Development
- 2. Development of Satellite-based Regional Evaporative Flux Monitoring System for India
- 3. Glacial Lake Outburst Flood (GLOF) Risk Assessment
- 4. Development of spatial snowmelt runoff product in the Indian Himalayas
- 5. Operational National Hydrological Modelling System for the entire Country
- 6. Satellite data based inputs for Irrigation Scheduling for a selected Irrigation Project command area
- 7. Operational hydrological drought services using remote sensing data
- 8. Customized RS & GIS Training and Capacity Building

Development of Satellite-based Regional Evaporative Flux Monitoring System for India

Objectives

- 1. Daily actual evapotranspiration (mm/day) estimate at 5.5 km spatial resolution in near real time
- 2. Satellite data based regional ET estimates for India at spatial scales of watershed/sub-basin/basin and at temporal scales of daily, fortnightly, monthly and annually
- 3. Long term ET database
- 4. Web based (India-WRIS/NWIC/Bhuvan) regional ET monitoring system

Achievements till date

- Computation of surface energy balance equation components like Net radiation (R_n) and Soil heat flux (G) for Modified PT method
- Development of methodology for satellite based Modified PT parameter (φ) using NDVI-LST triangle
- Evaporative Flux estimation from Modified PT parameter (φ) and surface energy balance equation components
- Model frame work development for deriving near real time AET estimation using INSAT3D, NPPS and CDAS, NOAA (meteorological datasets)
- Communicated with agricultural universities and other research institutes across India for setting up ET sensors instrumentation

Deliverables Satellite Derived Products

- 1. Net Radiation R_n
- 2. Soil heat Flux G
- 3. Actual Evapotranspiration (AET)
- 4. Sensible Heat Flux

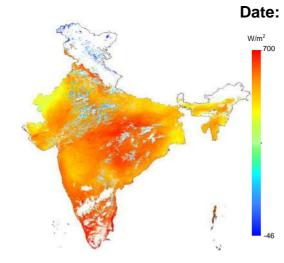
2019-2020 Work Plan

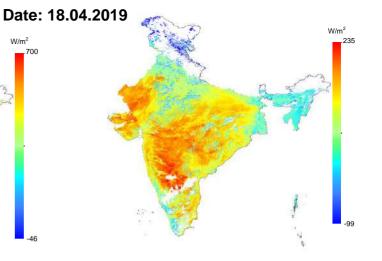
Experimental AET product generation & Validation

- Development of architecture of the AET product generation and Computation of near real time product generation
- Web hosting of experimental actual ET product
- Validation of experimental AET product with global AET products
- Development of water balanced based ET
- Establishment of field ET observation network across country Phase 1
- Validation of satellite based AET with field measurement will be initiated

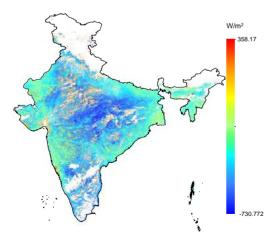
Details of sample products

Spatial Extent: Indian Region
Latitude 5° to 38° and longitude 66° to 104°
Spatial Resolution: 375 metre
Temporal Resolution: Daily

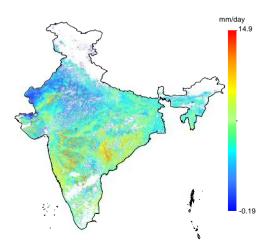

Input data sets


NPP Suomi: Albedo, NDVI, LST INSAT3D: Insolation, ,OLR

Meteorological data: Air temperature, Dewpoint temperature

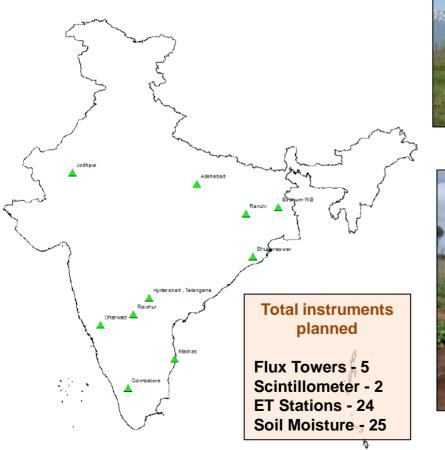

Fixed Inputs: CARTO DEM, Region of interest (Indian region)

Database availability: 25-Mar-2018 onwards



Daily Average Net Radiation flux

Daily Average Soil Heat flux

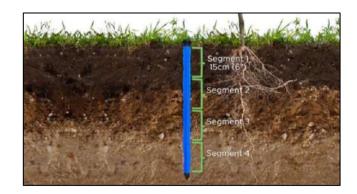


Daily Average Sensible Heat flux

Daily Actual Evapotranspiration

Ground based instrumentation network related to ET and Soil moisture measurement for calibration and validation of Satellite derived Products

Selected and communicated locations for ET measurement sensors installation in Phase 1 (Apart from already existing instrumentation setup)



ET Station

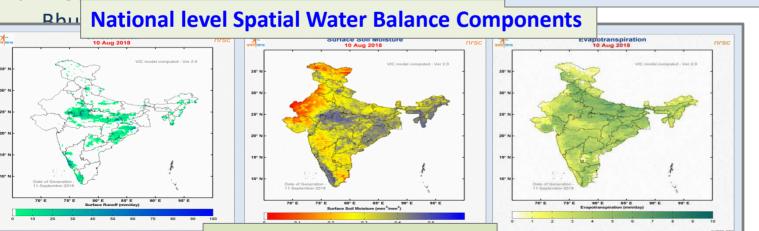
Soil Moisture Measuring Probe

Scintillometers

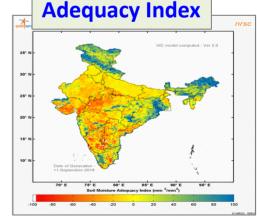
Flux Tower

Soil Moisture probes will measure soil moisture at 6 different depth along the soil column (1 m) at 10, 30, 50, 60, 80, 100 cm depths.

Operational Web-based National Hydrological Modeling System



Salient Features


- National level hydrological modeling framework
- Near-real-time water balance components estimation
- Field experimentation setup for calibration and validation
- Reservoir inflow forecast
- Web-enabling to India-WRIS/

2019-20 Planned Activities

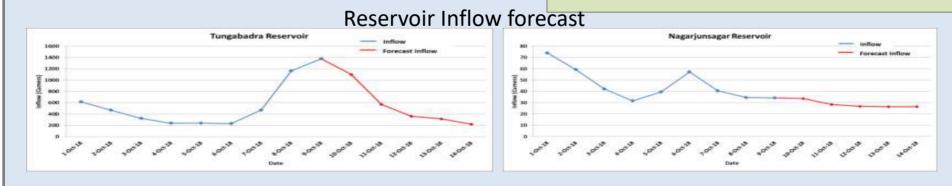
- Forecast of Inflows (91 Major Reservoirs)
- Crop Specific Irrigation Requirement
- River Discharge at selected locations
- Field Experimentation setup for calibration and validation of SM
- Snow Melt Runoff estimation using Energy Balance Mode

3 min (~5.5 km) Grid-wise Products

Soli ivioisture

Operational Web-based National Hydrological Modeling System

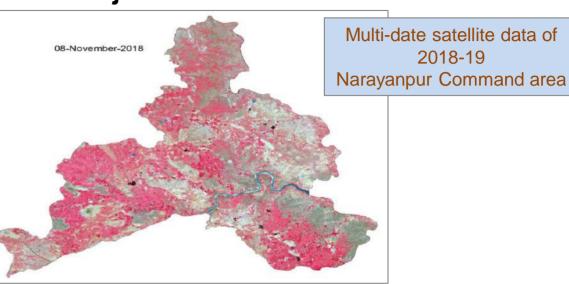
Soil Moisture Validation

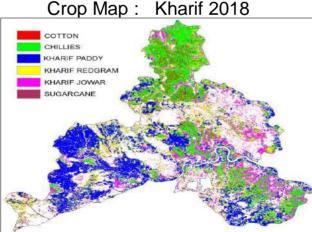


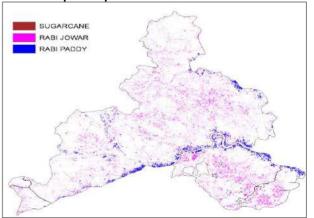
- 25 Permanent probes to measure soil moisture along the soil column
- 10 Mobile probes up to 15 30cm soil moisture measurement

Technology Transfer

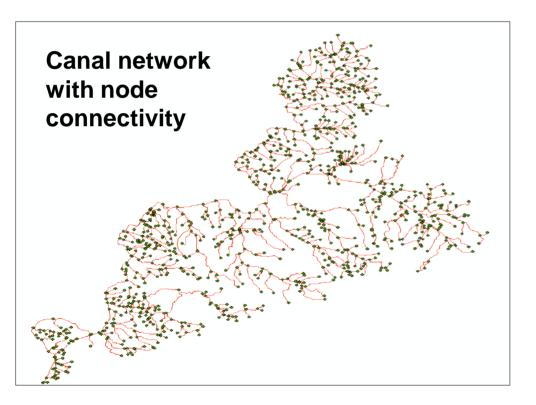
- The near-real-time hydrological model outputs (surface runoff, evapotranspiration, layer wise soil moisture data, min_temp, max_temp and rainfall) are shared with NPMU on a daily basis
- Training of NWIC Officials is scheduled from 13th May, 2019 on VIC model development and execution.

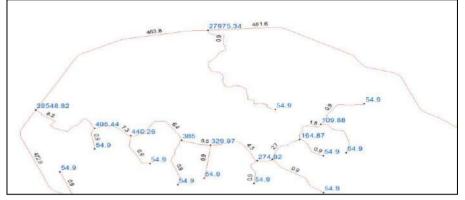



Satellite data based inputs for Irrigation Scheduling for a Selected Irrigation Project command area



Crop Map: Rabi 2018-19





Satellite data based inputs for Irrigation Scheduling for a Selected Irrigation Project command area

Canal Releases Estimation and Scheduling Module

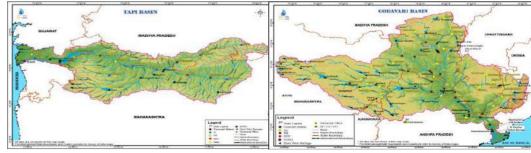
- Volume required at each junction(ha.m)
- Volume to be diverted to each offtaking canal(ha.m)
- Discharge in each canal to meet the requirement for defined release time (m³/s)

Real-time Operational Spatial Flood Early Warning System Development for Tapi and Godavari Basins

Objectives

- ✓ To develop medium-range flood early warning models for the major floodplains of Godavari and Tapi river basins using space based inputs through hydrological modelling approach.
- To develop spatial flood inundation simulation models using high resolution ALTM DTM in the major floodplains of the rivers. Carto 10 m DEM for other prominent flood plains.
- ✓ To develop web-enabled real-time spatial flood early warning system.
- To develop workflow mechanism for issuing flood advisory to the concerned disaster management authorities during the flood event.
- Generation of flood inundation scenarios in the main flood-plains of the rivers under different flood return periods

What is new ?


- □ To develop fully automated web-enabled flood early warning system to give flood advisories
- □ To consider complete basin area for flood early warning
- □ To cover maximum extent of floodplains for inundation simulations (ALTM + CARTO 10m)
- □ Scientific assessment of flood-prone areas under different flood return periods
- □ Complete 2-D flood inundation simulations in delta areas

Milestones and Status (as on today)

S.No	Activity	Proposed	Status (as on today)
1	Collection of field data and establishing gauge sites by CWC/IMD (if required)	Mar 2019	In progress
2	Preparation of spatial and non-spatial database	Mar 2019	In progress
3	Flood forecast model development	June 2019	Completed
4	FF Model calibration and validation	Dec 2019	In progress
5	Development of spatial Inundation simulation models	Mar 2021	Initiated, ALTM DEM acquisition is in progress
6	Inundation simulation models calibration and validation	Sep 2021	
7	Inundation simulations for different flood return periods	Dec 2022	
8	Development of web-enabled flood forecast system	Mar 2023	
9	Establishing linkages with user organisations	Dec 2022	
10	Implementation of the activity in real-time at NRSC	June 2023	
11	Transfer of technology and models to CWC	Sep 2023	
12	Compilation & report preparation	Mar 2024	

Activities Planned for 2019-2020

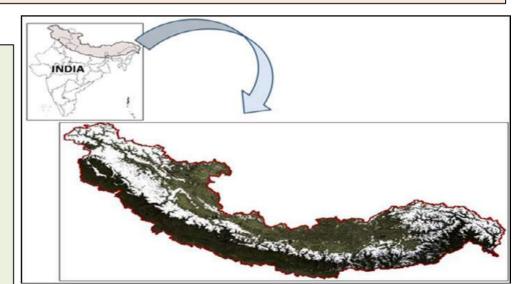
S.No	Activity	2019-20 (Apr- Jun)	2019-20 (Jul- Sep)	2019-20 (Oct- Dec)	2019-20 (Jan- Mar)
1.	MIKE Hydro River HD Model calibration and validation.	I	I		
2.	Development of spatial Inundation simulation models				

Tapi Basin

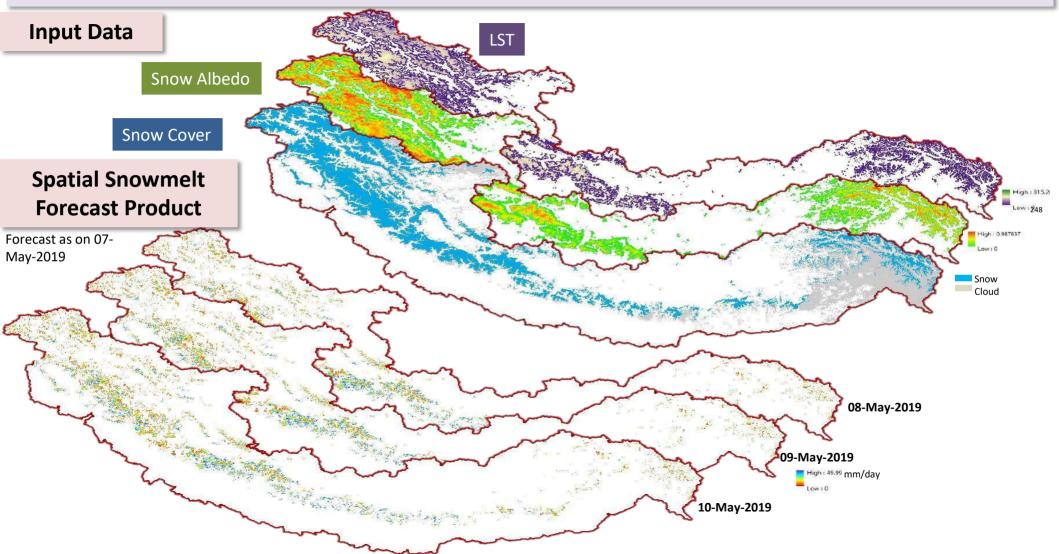
Godavari Basin

Development of Spatial Snowmelt Runoff product in Indian Himalayas (NHP)

Study Objectives


- To develop a short-term snowmelt runoff forecasting model using satellite derived products and field data
- To generate a spatial daily/3-day gridded snowmelt forecast product
- To provide short term snowmelt runoff forecast at selected basin outlets in snowmelt season

Study Area


Indian Himalayas covering Major river systems (Indus, Ganga and Brahmaputra) including outside Indian boundary

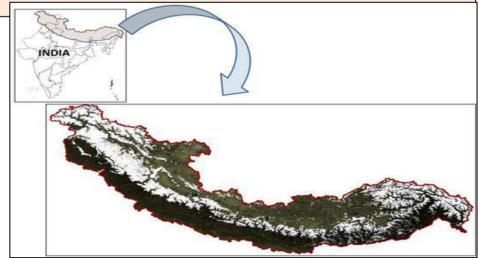
Present Status

- Suomi-NPP satellite derived products such as daily SCA, Snow Albedo and LST generated for 2015 to 2018 for April to June months.
- Established of process chain for NRT generation of NPP products on daily basis
- Developed short term spatial snowmelt forecast model. Calibration and validation to be done
- Experimental spatial snowmelt forecast products being generated

Development of Spatial Snowmelt Runoff product in Indian Himalayas (NHP)

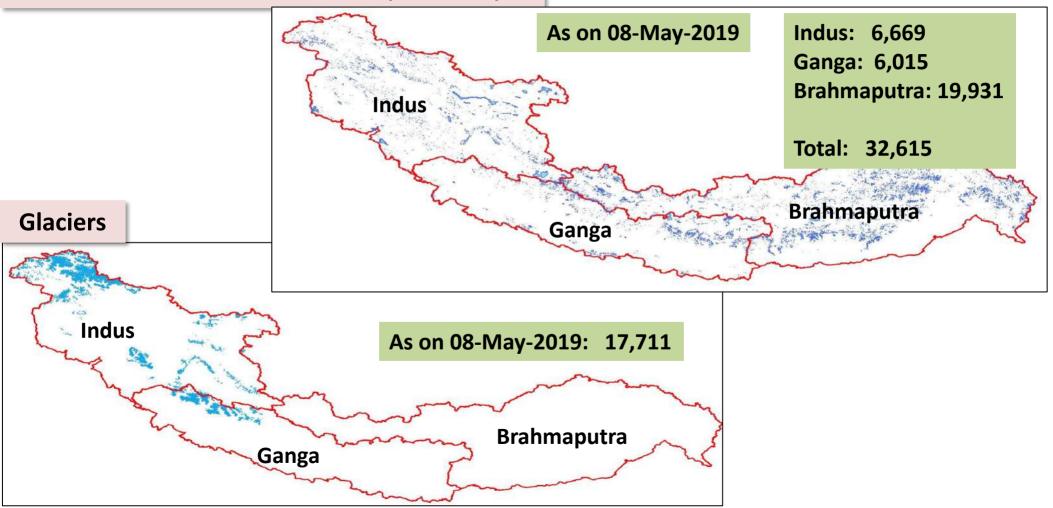
Glacial Lake Outburst Flood Risk Assessment of Glacial Lakes in Indian Himalayas

Study Objectives


- Inventory of Glacial lakes using high resolution satellite data
- Selection and Prioritisation of critical glacial lakes
- Generation of high resolution DEM for d/s of prioritized critical lakes (15)
- Investigation of prioritized critical lakes and their surroundings based on high resolution DEM and data
 - delling and inundation mapping using high resolution DEM

Study Area

Indian Himalayas covering Major river systems (Indus, Ganga and Brahmaputra) including outside Indian boundary


Present Status

- RS-2 LISS-IV data (450 Sub-scenes) were procured
- Cartosat DEM of 10 m resolution for study area procured
- Inventory of Glacial lakes and water bodies (> 0.25 ha) along 21 attributes being generated
- Methodology for ranking is finalised

Glacial Lake Outburst Flood Risk Assessment of Glacial Lakes in Indian Himalayas

Glacial lakes and Water bodies (> 0.25 ha)

Customized RS & GIS Training and Capacity Building (NHP)

Objectives

- To conduct 2 training programs (one week) per year on RS & GIS fundamentals with 25 participants per batch (2017-18 to 2023-24)
- To conduct 2 customized training programs (two weeks) per year on "RS & GIS applications in water resources management" with 25 participants per batch (2017-18 to 2023-24).

in an ing i				
Year	Training Programmes	Duration	No. of Participant s	No. of IAs
2017-18	2 training programs (1 week) per year on "RS & GIS fundamentals"	31-Jul-17 to 04-Aug-17 09-Oct-17 to 13-Oct-17	23 19	12 9
	2 training programs (2weeks) per year on "RS & GIS applications in water resources management"	18-Sep-17 to 29-Sep-17 05-Feb-18 to 16-Feb-18	21 8 al- 71	11 5
2018-19	2 training programs (1 week) per year on "RS & GIS fundamentals"	09-Apr-18 to 13-Apr-18 29-Oct-18 to 02-Nov-18	17 13	5 4
	2 training programs (2weeks) per year on "RS & GIS applications in water resources management"	30-Jul-18 to 10-Aug-18 11-Feb-19 to 22-Feb-19	29 23	10 8
		Tot	al- 82	

Training Programmes conducted till date

Timelines/Milestones of NRSC activities under NHP

Activity	2017-18	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24	
Flood Early Warning	FF Model Dev.		Cal & Val of FF Model & Dev. Of SISM's	Dev. of web- enabled FF system	Spatial Simulations for different RI	Real-time Implementati on	Real-time Implementation. Transfer to CWC	
ET	Dev. of Net Radiation and Soil Heat Flux Products. Meth. Dev.for ET estimation		Dev. of A ET product and Est. field obser. network	ET validation & Long term database generation and analysis	Operational AET product & web- enabled ET monitoring system	Near real time AET, PET	Real-time Implementation. Transfer to CWC	
GLOF	Inv. of GL & glaciers Prelim. selection and Ranking of GL		Gen. of High res. DEM & Hydr. Invest.	GLOF modelling	Assessment of GLOF Risk & Dev. of visualizn.sys.			
Snowmelt	Parameter retrieval and Model development		Experimental forecast	R T forecast and refinement	Real-time forecast and refinement of model			
Hydrological Fluxes	Model Framework Developed	Field Expn . & Valid.	Forecast of inflows into major reservoirs	Real-time run, dissemination, and Web hosting				
Irrigation	GIS data prep.& DSS conceptualis ation	FIR for in season Cropping Pattern	Weekly canal –wise IR estimates	Val. Of IR with canal releases	Dev. Of DSS for canal advisories	Exp. run	Operationalisatio n	

Significant Achievements under NHP

Component	Activities
Flood EW	 Flood Forecasting model (Tapi and Godavari) set up is in progress ALTM DEM for Tapi is acquired and DEM generation is in progress
ET	 Net radiation product & soil heat flux products are being generated Methodology for derivation of AET product is in progress
GLOF	 RS-2 LISS-IV data (450 Sub-scenes) & 10 m Cartosat DEM procured Inventory of Glacial lakes and water bodies (> 0.25 ha)is in progress Methodology for prioritisation of ranking of critical glacial lakes is finalised
Snowmelt	 Process chain for near-real-time generation of Suomi-NPP Daily maximum possible snow cover data products Parameter retrieval and model development is in progress
Hydrological Fluxes	 National level HM framework at 3' grid resolution in VIC model established Runoff calibration is in progress & forecast of inflows into 48 major reservoirs completed
Irrigation	 Historical cropping pattern derived for Narayanpur command area VIC-CROPSYST frame work developed for estimation of FIR & Development of Hydraulic model simulating uniform flow in an irrigation channel is under progress
Hydrological Drought	 Developed methodology for composite Hydrological Drought Index Developed methodology and implemented standardised Runoff Index at grid level

